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Fractional Langevin equation
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We investigate fractional Brownian motion with a microscopic random-matrix model and introduce a frac-
tional Langevin equation. We use the latter to study both subdiffusion and superdiffusion of a free particle
coupled to a fractal heat bath. We further compare fractional Brownian motion with the fractal time process.
The respective mean-square displacements of these two forms of anomalous diffusion exhibit the same power-
law behavior. Here we show that their lowest moments are actually all identical, except the second moment of
the velocity. This provides a simple criterion that enable us to distinguish these two non-Markovian processes.
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Diffusion is one of the basic nonequilibrium phenomen
Normal diffusion is well described in the theory of Brownia
motion as a Gaussian process that is both local in space
time. It is characterized by a mean-square displacement
is asymptotically linear in time,̂x2&52Dt, whereD is the
diffusion constant@1#. However, a growing number of ex
perimental observations show that more complex proces
in which the mean-square displacement is not proportiona
t, also occur in nature. Anomalous diffusion has for instan
been seen in micelle systems@2#, two-dimensional rotating
flows @3#, porous glasses@4#, actine networks@5#, but also on
capillary surface waves@6#, in strongly coupled dusty plas
mas @7#, and more recently in intracellular transport@8#.
Anomalous diffusion finds its dynamical origin in nonloca
ity, either in space or in time~for a recent review see@9#!. A
well-known example of a process that is nonlocal in spac
Lévy stable motion, for which the mean-square displacem
is actually infinite due to the occurrence of very long jum
@10#. In this paper we focus on processes that are nonloca
time and whence show memory effects. Specifically,
shall discuss and compare fractional Brownian mot
~FBM! @11# and the fractal time process~FTP! @12#. These
two forms of anomalous diffusion are fundamentally diffe
ent ~see below!. Yet, they are difficult to tell apart experi
mentally, since both yield a mean-square displacement o
form ^x2&}ta, aÞ1. It is for instance still an open questio
whether the long-range correlations observed in nucleo
sequences@13–15# are to be interpreted in terms of FBM o
FTP-type DNA walks@16#. In this paper we aim at providing
a simple criterion that permits to distinguish between th
two non-Markovian processes.

The very difference between FBM and FTP is best illu
trated by looking at their diffusion equations. The solution
the diffusion equation for FBM@17#

]

]t
PFBM~x,t !5aDta21

]2

]x2
PFBM~x,t !, ~1!

is easily found to be the Gaussian distributionPFBM(x,t)
5exp(2x2/4Dta)/@4pDta#1/2. FBM thus describes Gauss
ian transport. It is important to note that Eq.~1! is thereby
local in time ~there is no memory kernel!. The non-
Markovian character is expressed through a time-depen
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diffusion constant,Da(t)5aDta21. In contradistinction, the
diffusion equation for FTP@18#

]

]t
PFTP~x,t !5

D

G~a21!
E

0

t dt

~ t2t!22a

]2

]x2
PFTP~x,t! ~2!

contains a memory kernel and the distribution functi
PFTP(x,t) is hence non-Gaussian. The solution of Eq.~2! is
given by PFTP@x,z#5exp(2uxuza/2/D1/2)/@2D1/2z12a/2# in
Laplacez space. In time,PFTP(x,t) has been expressed i
closed form in terms of a Fox function@19# or a one sided
Lévy stable distribution@20#. By introducing further the
Riemann-Liouville fractional derivative (21,l,0) @21#

]l f ~ t !

]tl
5

1

G~2l!
E

0

t f ~t! dt

~ t2t!l11
, ~3!

Eq. ~2! can be rewritten as a fractional diffusion equati
@22#

]

]t
PFTP~x,t !5D

]12a

]t12a

]2

]x2
PFTP~x,t !. ~4!

Both Eqs.~1! and~4! reduce to the normal diffusion equatio
whena51.

We begin our discussion of FBM by introducing a fra
tional Langevin equation. It is worthwhile to point out th
the Langevin and the phase-space descriptions of Brow
motion are no longer fully equivalent in the non-Markovia
regime of interest here. As recently discussed by Calz
et al. @25#, the Langevin equation contains more informati
and thus appears more fundamental. We then apply this f
tional Langevin equation to study in some detail the anom
lous diffusion of a free particle coupled to a fractal heat ba
In particular, we evaluate the first two moments of both t
position and the velocity of the particle, which we express
terms of Mittag-Leffler functions. Finally, we compare wit
the results obtained recently for FTP by Metzler and Klaf
for 0,a,1 @23# and by Barkai and Silbey for 1,a,2
@24# by using a fractional Klein-Kramers equation. We fin
that FBM and FTP satisfy the same generalized Einstein
lation. Moreover, their lowest moments are all equal, exc
the second moments of the velocity.
©2001 The American Physical Society06-1
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We examine the dynamics of the Brownian particle with
microscopic random-matrix model. Random-matrix theo
has already been successfully applied in the context
anomalous diffusion in Refs.@27–29#. The relaxation of a
system coupled to a complex environment is expected to
insensitive to the details of the interaction. The process m
then be described within a statistical approach where the
teraction is modeled by a random operator@26#. We thus
consider a systemS weakly coupled to a fractal heat bathB
via a random-matrix interaction@29,30#. The coupling is
chosen linear in the positionx of the system. The generi
form of the Hamiltonian is given by

H5HS^ 1B11S^ HB1x^ V, ~5!

whereHS5p2/2M1U(x) is the Hamiltonian of the system
HB describes the bath andV is a centered Gaussian rando
band matrix. It is assumed that initially the system and
bath are uncorrelated and that the latter is in thermal equ
rium at temperatureb5(kT)21. The variance of the random
interaction is further taken to have the form@29#

Vab
2 5A0

u«a2«bua21

@r~«a!r~«b!#1/2
expF2

~«a2«b!2

2D2 G . ~6!

Here«a’s denote the eigenenergies of the bath Hamilton
(HBua&5«aua&), A0 is the strength of the coupling,D the
bandwidth, andr(«) is the density of states of the bat
which is locally written asr(«)5r0exp(b«). As shown in
@29#, the variance~6! gives rise to subdiffusion whena,1
and to superdiffusion when 1,a,2. The coupling to the
bath is characterized by the bath correlation function tha
defined asK(t)5^Ṽ(t)Ṽ(0)&B5K8(t)1 iK 9(t). Here Ṽ(t)
5exp(iHBt)Vexp(2iHBt) and ^•••&B denotes the averag
thermal. After performing the average over the rando
matrix ensemble,K̄(t) is found to be simply the Fourie
transform of the varianceVab

2 with respect to«b . In the
following we consider the limit of high temperature an
large bandwidth, 1!D!kT. Using the variance~6! we then
obtain

K̄8~ t !52A0G~a!cosS ap

2 D t2a, K̄9~ t !5
b

2

dK̄8

dt
. ~7!

We see that the time dependence ofK̄(t) follows an inverse
power law. This presence of a long tail leads to long-tim
correlation effects in the dynamics of the Brownian syst
@29#. Note that fora51, the Fourier transform of Eq.~6!

readsK̄8(t)52pA0d(t) and normal Brownian motion is re
covered. The generalized Langevin equation that co
sponds to the random-matrix Hamiltonian~5! can easily be
derived with the method presented in Ref.@31#. In the limit
of weak coupling this leads to

Mẍ~ t !1ME
0

t

g~ t2t!ẋ~t!dt1U8~x!5j~ t !, ~8!
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wherej(t) is a Gaussian random force with mean zero a
variance^j(t)j(0)&5K̄8(t), and g(t) is a damping kernel
that obeysMkTg(t)5K̄8(t). This last relation is often re-
ferred to as the second fluctuation-dissipation theorem@33#.
Remark that the Langevin equation is completely determi
by the real partK̄8(t) of the bath correlation function. Fur
thermore, in the limit of weak coupling, the dynamics d
scribed by the Hamiltonian~5! is Gaussian and one can sho
that the corresponding diffusion equation is precisely giv
by Eq.~1!. Using again the fractional derivative~3!, we may
rewrite Eq.~8! in the form of a fractional Langevin equation
We obtain

Mẍ~ t !1Mga

]a21

]ta21
ẋ~ t !1U8~x!5j~ t !, ~9!

where we have definedga5pA0b/@M sin(ap/2)#. The frac-
tional Langevin equation~9! describes both subdiffusion fo
0,a,1 and superdiffusion for 1,a,2 @34#. As a simple
application of the fractional equation~9!, we now concen-
trate on the free particle and accordingly setU(x)50. In this
case, the solution of the Langevin equation is easily obtai
by applying Laplace transform techniques@32#. We find

x~ t !5x01v0Bv~ t !1E
0

t

Bv~ t2t!j~t!dt, ~10!

where (x0 ,v0) are the initial coordinates of the particle an
Bv(t)5*0

t Cv(t8)dt8 is the integral of the~normalized! ve-
locity autocorrelation functionCv(t)5^v(t)v&/^v2&. The
Laplace transform ofCv(t) is given by

Cv@z#5
1

z1g@z#
5

1

z1gaza21
, ~11!

whereg@z# is the Laplace transform of the damping kern
Equation ~11! is known as the first fluctuation-dissipatio
theorem@33#. By taking the inverse Laplace transform, th
velocity autocorrelation function can be written as

Cv~ t !5E22a~2gat22a!. ~12!

Here we have introduced the Mittag-Leffler functionEa(t),
which is defined by the series expansion@35#

Ea~ t !5 (
n50

`
tn

G~an11!
. ~13!

The functionEa(t) reduces to the exponential whena51.
The asymptotic behavior of the Mittag-Leffler function~13!
for short and long times is respectively given by;exp(t) and
;2@ tG(12a)#21, 0,a,1 and 1,a,2 @36#. For the ve-
locity autocorrelation function~12! this yields a typical
stretched exponential behavior at short times

Cv~ t !;exp
2gat22a

G~32a!
, t!

1

~ga!1/a
, ~14!
6-2
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FRACTIONAL LANGEVIN EQUATION PHYSICAL REVIEW E 64 051106
and an inverse power-law tail at long times

Cv~ t !;
ta22

gaG~a21!
, t@

1

~ga!1/a
. ~15!

The result~15! has already been obtained in Ref.@29#, where
it has been shown to induce the ‘‘whip-back’’ effect. Afte
time integration, we finally get from Eq.~12!

Bv~ t !5t E22a,2~2gat22a!, ~16!

where we have used the generalized Mittag-Leffler funct
Ea,b(t) defined as@35#

Ea,b~ t !5(
n

`
tn

G~an1b!
. ~17!

In the long-time limit, the generalized Mittag-Leffler func
tion satisfies Ea,b(t);2@ t G(b2a)#21. Accordingly,
Bv(t) exhibits a decay of the form

Bv~ t !;
ta21

gaG~a!
, when t→`. ~18!

We emphasize that the solution~10! of the fractional Lange-
vin equation in the force-free case is completely specified
the knowledge of the functionBv(t).

Let us now turn to the evaluation of the lowest mome
of the position and the velocity of the free particle. The me
displacement and the mean-square displacement are re
deduced from Eq.~10!. We find

^x&5x01v0t E22a,2~2gat22a! ;
t→`

v0

ga

ta21

G~a!
~19!

and

^x2&5
2kT

M
t2E22a,3~2gat22a! ;

t→`

2kT

gaM

ta

G~11a!
.

~20!

In the last equation, thermal initial conditions have been
sumed (x050, v0

25kT/M ). In addition, one may easily
verify that ^x&2, ^x2&, andCv(t) satisfy the general Green
Kubo relation

^x2&2^x&25
2kT

M E
0

t

dt8E
0

t8
dt Cv~t!, ~21!

which is known from linear response theory@33#. In a similar
way, one can compute the first and second moments of
velocity from the time derivative of Eq.~10!. This results in

^v&5v0E22a~2gat22a! ;
t→`

v0

ga
ta22, ~22!

and
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^v2&5v0
2@E22a~2gat22a!#2

1
kT

M
$12@E22a~2gat22a!#2%. ~23!

We observe that̂v2& decays like (ta22)2 for larget. A com-
mon remarkable property of the above calculated mean
ues is their slow relaxation towards equilibrium as given
the ~generalized! Mittag-Leffler function. This has to be con
trasted with normal Brownian motion where all this quan
ties display an exponential decay. Let us now discuss
generalized Einstein relation that relates driven and free p
cess@37#. We consider a particle initially at rest (x05v0
50) and seek the mean position^x&F as a function of an
externally applied constant forceU(x)52xFu(t). From the
Langevin equation we easily find

d^x&F

dt
5

F

ME
0

t

Cv~ t8!dt8, ~24!

where the velocity autocorrelation functionCv(t) is given by
Eq. ~12!. Equation~24! together with the Green-Kubo rela
tion ~21! for ^x2&0 in the force-free case, then yields th
generalized Einstein relation for FBM

^x&F5
F

2kT
^x2&0 . ~25!

It is interesting to note that the validity of the Einstein rel
tion ~25! has been recently verified experimentally@38,39#.

We now come to the comparison of FBM with FTP. Ba
kai and Silbey have investigated superdiffusive FTP with
fractional Klein-Kramers equation that they inferred from
generalized Rayleigh model@24#. For the free particle, a di-
rect comparison@40# between their results and our Eq
~19!–~25! shows that the mean displacement~19!, the mean-
square displacement~20!, the velocity’s first moment~22!,
and the velocity autocorrelation function~12! are identical
for the two processes. This means, in particular, that FB
and FTP satisfy the same Green-Kubo relation~21!. More-
over, both FBM and FTP obey the same generalized Eins
relation~25!. Although FBM and FTP are fundamentally di
ferent processes, we thus notice that they share strikin
common features. However, the second moments of the
locity are different. For convenience, we quote their equat
~2.18! that reads~in our notation!

^v2&FTP5v0
2E22a~22gat22a!

1
kT

M
$12E22a~22gat22a!%. ~26!

We see that for FTP, the second moment of the veloc
relaxes asymptotically liketa22. This is in sharp contrast to
the FBM result Eq.~23! that exhibits a much faster decay.
is also worth noting that Eqs.~22! and ~26! reduce to the
same~exponential! expression fora51. On the other hand
subdiffusive FTP has been studied by Metzler and Klafter
using a fractional Klein-Kramers equation derived from
non-Markovian generalization of the Chapman-Kolmogor
6-3



ee
r

e

t
n

nc

on

ric
ge

if-
at-

the
ctal
and
of
on
ral-
ual

E.

ERIC LUTZ PHYSICAL REVIEW E 64 051106
equation. A comparison with their results for the force-fr
case leads to similar conclusions as in the superdiffusive
gime. Many experiments on anomalous diffusion have m
sured either the mean-square displacement@5–8# or the gen-
eralized Einstein relation@38,39#. However, the latter do no
allow to distinguish FBM and FTP, as we have just show
In contrast, the variance of the velocity offers a clear disti
tion between these two processes as exemplified by Eqs.~23!
and~26!. This result could stimulate ongoing experiments
anomalous diffusion@41#.

In summary, we have investigated FBM within a gene
random-matrix approach and introduced a fractional Lan
ys

ev

S.

d

05110
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vin equation that applies for both subdiffusion and superd
fusion. The Langevin approach thus provides a unified tre
ment of anomalous diffusion. We have further studied
anomalous dynamics of a free particle coupled to a fra
heat bath and performed a comparison between FBM
FTP. We have found that these completely different forms
non-Markovian anomalous diffusion share many comm
characteristics. In particular, they satisfy the same gene
ized Einstein relation and their lowest moments are all eq
with the exception of the second moment of the velocity.

We thank E. Barkai for reading the manuscript and
Schröder for correspondence.
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